大数据时代的公安信息化建设如何结合?

admin 0 2024-05-11

一、大数据时代的公安信息化建设如何结合?

大数据时代的警务模式就是“数据警务”,“数据警务”是一个全新的警务工作理念、警务运行机制和警务工作方式,应遵循数据警务的本质特点、工作原则、价值作用和要求,边探索边实践,形成警务新常态。

建构“数据警务”的思路策略

(一)深化数据治理,夯实工作基础。

统一、规范、科学的标准体系是实现数据交换、资源共享和整合对接的前提;坚持把基础数据标准规范作为先导性工作来抓,打牢大数据应用发展根基。

01、狠抓数据资源梳理

公安机关绝大多数数据来源于政府部门、企事业单位和社会组织提供或机器读取,其中结构化数据命名、标识、格式、值域、分类和代码差异较大;非结构化数据,特别是互联网数据、机器自动识别数据、视频图像数据等因自然客观条件和机器设备技术指标限制,产生许多错误数据。

要突出数据指向的实战性、数据本身的真实性和数据存在的安全性,组织开展现有数据资源大梳理,制定以系统目标和数据目标为主体的数据标签体系,摸清现有数据有哪些种类、在哪里、有何用途,为全警掌握应用提供确切指引。

02、狠抓数据标准规范建设

严格执行公安部数据标准,完善信息采集目录,研究制定数据采集、管理、开放、应用、交换接口等标准,规范基础信息采集目录、种类、内容、范围和方式方法;健全各类基础技术规范标准,确保设备接口、编码标准衔接兼容,解决上下对接难、内外整合难等问题;明确各部门、各警种信息采录、传递、加工、维护等一系列工作标准和规范,大力推进警情数据标准化、案件标签化、标准地址库、视频信息结构化建设,努力将非结构化数据转换成计算机可以读取的数字化数据,提高大数据应用价值。

03、狠抓数据资源采集共享

建立数据采集规范指引和数据质量监督系统,理清基础信息采什么、怎么采、如何传输等问题;研发一体化数据采集系统,整合采集数据标准项,解决基层民警重复采集问题;通过科技手段提高信息自动采集的范围和效果,提高源头数据的自动化获取水平和效率;通过完成派出所信息室标准化建设工作,提高信息采集质量;深化互联网数据的收集、采集,有效拓展丰富信息数据,更好地服务公安工作;利用大数据技术,把基层必须采集的工作流程,改为复用、审核、修改,最大限度减轻民警负担。

(二)强化数据挖掘,辅助警务工作

坚持把洞察力作为警务工作核心能力,通过对数据的智能化处理,挖掘和提炼各类数据、信息,以数据驱动各项工作的深入发展。

01、在智能化上精准发力

引进感知能力、运算能力、学习能力强的智能设备,开展基于大数据分析挖掘应用模块建设,提高数据自动采集、加工、传输、分析、挖掘水平;大力开发应用智能指挥调度、智能比对碰撞、智能犯罪预测、人脸识别比对、人群热力图检测分析、警用装备管理物联网等“智慧警务”系统,做到精确研判、精准预测,推动风险防控从被动响应向主动预防转变。

02、在可视化上精准发力

加强决策信息的网上发布和推送,广泛运用直觉化、趣味化的直方图、极区图、三维地图、动画技术等多媒体技术,实现信息的可视化。采用数据图像化、数据可视化等方式,把数据挖掘结果以便于理解和观察的形式进行展示,有效激发受众的形象思维,帮助决策执行者快速、高效、灵活地洞察数据之间隐藏的关系和规律,以便决策的执行落实。

03、在共享化上精准发力

推动资源共享,深入开展警务资源与社会资源交换共享,通过嵌入服务、伴随服务、专属服务,提升警务服务的宽度深度。推动实战共享,纵向上,化点成线,将信息数据有机整合到扁平化指挥、专业化侦查中;横向上,化线成面,构建以大数据为基础的情报信息搜集研判、应急快速反应等勤务运行机制;结构上,化面成体,构建联通内外的跨时空、跨边界、跨领域共享机制。

(三)树立数据意识,转变工作思维

“数据警务”为创新工作思维、破解工作难题、优化工作执行提供了崭新的路径,广大公安民警应转变观念,善于借助数据的力量辅助警务工作。

01、确立数据资产理念

数据就是情报来源、研判资本和防控工具,属于十分重要的无形资产。公安民警需在工作上应注重数据的收集、重视数据的相关关系,重视数据在工作中的应用。

02、树立数据创新思维

“数据警务”的建构事关公安信息化发展全局,对于推进新一轮公安信息化发展起着引领性的作用,要不断更新观念、厘清思路,把握科技创新潮流和大数据规律特点,以大数据思维引领公安信息化创新发展,全力推进数据警务建设应用,着力提升预测预警和打防管控能力。

03、大力培育数据文化

建立“用数据说话、用数据决策、用数据管理、用数据创新”的工作机制,使各项工作都有充分的数据支撑,努力推动思维理念由“模糊归纳”转向“精细解析”,决策由“主观定性”转向“客观定量”,管理机制由“软性要求”转向“硬性达标”。

“数据警务”其实质在于大力推进云计算、大数据、物联网等新技术手段与公安业务工作的深度融合,推进“数据警务”“智慧警务”,将改变传统警务工作方式和改革警务运行机制,推动公安工作跨越式发展。

二、数据时代与大数据时代的区别?

区别是:大数据的数据结构与传统的数据结构有很大的不同,传统的数据库数据主要以结构化数据为主,而大数据系统中的数据往往有非常复杂的数据结构,其中既有结构化数据,也有大量的非结构化数据和半结构化数据,所以目前大数据技术体系不仅会采用传统的数据库来存储数据,也会采用NoSql数据库来存储数据,这也是大数据时代对于数据存储方式的一个重要改变。

三、大数据时代下如何利用小数据创造大价值?

“所谓‘小数据’,并不是因为数据量小,而是通过海量数据分析找出真正能帮助用户做决策的客观依据,让其真正实现商业智能。”日前,在线业务优化产品与服务提供商国双科技揭幕成立“国双数据中心”,该公司高级副总裁续扬向记者表示,数据对企业决策运营越来越重要,大数据时代来临,企业最终需要的数据不是单纯意义上的大数据,而是通过海量数据挖掘用户特征获取的有价值的“小数据”,进而使企业获取有价值的用户信息,科学地分析用户行为,帮助企业明确品牌定位、优化营销策略。

“小数据”是价值所在

“如今数据呈爆发式增长,已进入数据‘狂潮’时代,过去3年的数据量超过此前400年的数据总量。但是,高容量的数据要能够具体应用在各个行业才能算是有价值。”国双科技首席执行官祁国晟认为,大数据具有高容量、多元化、持续性和高价值4个显著特征。目前,各行各业的数据量正在迅速增长,使用传统的数据库工具已经无法处理这些数据。在硬件发展有限的条件下,通过软件技术的提升来处理不断增长的数据量,对数据利用率的提升以及各行业的发展起着重要的推动作用

四、关于数据时代标题?

1、机遇魅力无限,数据精彩约。

2、云分析大数据,为您增值财富。

3、洞察数据的第一个机会,精明的商业传奇。

4、智能数字生态,互动多屏时代。

5、数据精彩非凡,商机一览无余。

6、数据搜索全方位,商机定位零距离。

7、数据分析新概念,专业服务经验。

8、数据时代,世界,数据时代,未来。

9、寻找未来的答案,在市场中领先。

10、我们可以找到你想要的任何东西。

11、快速的数据检索和定位,高效的云平台分析。

12、一步一个脚印,一步一个脚印。

13、云平台,全智能,一机,保证。

14、没有什么是重要的,没有什么是重要的。

15、快速搜索,快速分析,了解自己的商业机会。

16、没有搜索不到的数据,只有把握不住的商机。

17、大数据时代,云搜索云平台。

18、地平线比云还高,态度是脚踏实地。

19、数据搜索和分析,商业智能赢。

20、有了数据分析的方法,商机就来了。

五、大数据时代到来?

大数据时代是指利用相关算法对海量数据的处理与分析、存储,从海量的数据中发现价值,服务于生活与生产。在餐饮、电信、金融、娱乐、体育等领域都能够感受到大数据对各行各业带来的影响。

2、最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”

六、大数据时代现状?

首先,离不开不断发展的计算机存储能力和完美的计算能力

其次,随着移动互联网、物联网的发展和智能手机的普及,每天产生海量数据

就这样,海量数据和计算能力相结合,大数据计算技术解决了海量数据的采集、存储、计算、分析的问题

于是,数据的价值和意义逐渐被挖掘

七、关于劳动的赞美结合时代?

让我们用劳动书写新时代,在奋斗中创造美好的生活。

八、2018年大数据时代

2018年大数据时代:数据驱动商业创新的新趋势

在当今数字化智能化的时代,大数据正迅速崛起并产生深远影响,成为企业发展的关键驱动力。2018年,大数据在商业中的应用进入一个全新阶段,推动着商业创新不断迈向新的高度。

数据驱动的商业决策

过去,企业决策往往基于经验和直觉,风险较高且效率有限。而在2018年大数据时代,数据驱动的商业决策成为趋势,通过对海量数据的分析和挖掘,企业能够更准确地了解市场趋势、消费者需求和竞争对手动态,从而做出更明智的决策。

个性化营销的兴起

随着大数据技术的不断发展,个性化营销逐渐成为营销策略的主流。通过数据分析,企业可以更好地了解消费者的偏好和行为习惯,精准推送符合其需求的产品和服务,提升营销效果和客户满意度。

云计算与大数据融合

2018年,云计算和大数据技术的融合日益紧密,云端存储和计算能力的提升为大数据分析提供了更强大的支持。企业可通过云平台快速处理海量数据,并实现即时分析和智能决策,加速业务发展。

人工智能赋能大数据

人工智能作为大数据时代的新兴技术,为数据处理和分析注入了更多智慧。机器学习、深度学习等技术的不断创新,使得大数据的挖掘和应用更具智能化和效率化,带动企业实现更高效的运营和更具竞争力的产品创新。

数据安全与隐私保护

随着大数据应用范围的扩大,数据安全和隐私保护问题备受关注。2018年,企业需要加强数据安全意识和技术防护,建立完善的数据安全体系和隐私保护机制,确保数据在传输、存储和处理过程中的安全性和合规性。

跨界合作促进创新发展

在2018年大数据时代,跨界合作呈现出蓬勃发展的态势。不同行业、不同领域的企业和机构通过共享数据资源、技术经验和创新理念,共同探索新的商业模式和市场机遇,推动商业创新不断破局。

数据治理与规范建设

数据治理是大数据时代企业管理和运营的基石,规范建设是数据应用的根本保障。2018年,企业需加强数据治理意识,建立完善的数据管理体系和规范,规范数据采集、存储、处理和应用流程,确保数据的准确性、完整性和安全性。

未来展望:大数据赋能智慧商业

随着技术的不断演进和应用场景的不断拓展,大数据在商业中的作用将变得更加重要和深远。未来,随着人工智能、物联网、区块链等技术的融合,大数据将进一步赋能智慧商业,推动商业模式的创新和升级,助力企业实现可持续发展。

总的来说,2018年是大数据时代商业创新的关键一年,数据驱动、智能化和跨界合作成为发展的主旋律。企业应积极把握大数据带来的机遇,加强数据能力建设,转变发展思路和模式,不断探索创新之路,实现可持续发展和竞争优势。

九、大数据时代如何理解“大数据”?

数据就像是工业时代的石油和电力一样重要。

第一:大数据的来源。要想了解大数据,首先就要从数据的采集环节开始,也就是大数据是怎么产生的。当前,大数据的采集渠道主要有三个,分别是物联网、互联网系统(Web系统、App等)和传统信息系统(ERP等),其中物联网是数据的主要来源,占到了数据量的百分之九十。

第二:大数据的价值。了解大数据的价值是认知大数据技术体系的关键,而大数据的价值就是围绕数据价值化展开的。当前,数据价值化主要以数据分析来完成,数据分析包括统计学分析方式和机器学习的分析方式。

第三:大数据的应用场景。大数据要想完成落地应用,一个核心在于要了解大数据的应用场景,大数据的应用场景非常广泛,简单的说,有数据的地方就有大数据的应用场景。大数据的应用通常以业务为基础进行展开,通过大数据完成决策的制定是当前场景大数据分析的重要目的之一。

十、矢量数据和栅格数据结合的好处?

矢量数据和栅格数据的相对优势

栅格数据记录的所有点覆盖的区域,需要比矢量数据更多的存储空间

栅格数据计算上的创建成本比矢量数据更低

栅格数据在叠加多幅图像时容易出现问题

矢量数据易于叠加,例如叠加道路、河流、土地使用比栅格数据更容易

矢量数据更容易缩放、重新投影或注册

矢量数据更适合关系型数据库存储

矢量文件大小比栅格文件小得多

矢量数据更容易更新,如添加河流流量,但栅格图像必须重新创建

 

o域数据 大数据
python数据来源来源?
相关文章