行业分析的基本框架?

admin 0 2024-05-27

一、行业分析的基本框架?

无论哪个行业分析的基本框架都有很多的内容。如要对行业的基本情况做分析,这是重要的前提,还要做好行业一般特征分析,及行业结构分析,影响行业的因素分析等;

行业分析框架还包含行业中不同企业竞争的战略分析,行业的财务分析框架及行业的价值评估等等的分析框架。

二、数据治理体系框架?

业务驱动因素决定了在数据治理策略中需要仔细控制哪些数据(以及控制到什么程度)。例如,医疗保健提供者的业务驱动因素之一可能是确保与患者相关的数据的隐私,要求在数据流经企业时对其进行安全管理,以确保符合相关政府和行业法规。这些要求通知提供者的数据治理策略,成为其数据治理框架的基础。

精心规划的数据治理框架涵盖战略、战术和运营角色和职责。它可确保数据在企业内受到信任、记录良好且易于查找,并确保其安全、合规和保密。

该框架提供的一些最重要的好处包括:

· 一致的数据视图和业务术语表,同时为各个业务部门的需求提供适当的灵活性

· 确保数据准确性、完整性和一致性的计划

· 了解与关键实体相关的所有数据位置的高级能力,使数据资产可用且更容易与业务成果联系起来

· 为关键业务实体提供“单一版本真相”的框架

· 满足政府法规和行业要求的平台

· 可在整个企业中应用的数据和数据管理的明确定义的方法论和最佳实践

· 易于访问且保持安全、合规和机密的数据

三、煤炭行业分析框架?

1 包括供需分析、产能分析、价格分析、竞争格局分析等。2 供需分析是指对煤炭市场的供应和需求情况进行分析,包括煤炭产量、进出口情况、煤炭消费需求等因素的考量。产能分析是指对煤炭企业的生产能力和产能利用率进行评估,以了解行业的供给状况。价格分析是指对煤炭价格的波动和趋势进行分析,包括市场价格、成本价格、竞争价格等因素的考量。竞争格局分析是指对煤炭行业内各个企业的市场份额、竞争力、市场集中度等进行评估,以了解行业的竞争状况。3 煤炭行业是能源行业的重要组成部分,对于国家经济和能源安全具有重要意义。通过对煤炭行业的供需、产能、价格和竞争格局等方面进行分析,可以帮助决策者了解行业的发展趋势和问题,制定相应的政策和措施,促进行业的健康发展。此外,煤炭行业的分析还可以为投资者提供决策参考,帮助他们把握市场机会,降低投资风险。

四、行业数据哪里?行业数据哪里找?

行业数据可以从多个渠道获取,以下是一些常见的途径:

- 政府部门:政府相关部门、行业协会等机构通常会发布行业报告、数据分析和统计数据,可以在它们的官方网站上查找。

- 商业数据库:商业数据库如Statista、IBISWorld、Euromonitor等可以提供全球各行业的市场报告和数据分析,需要付费使用。

- 学术数据库:学术数据库如JSTOR、ScienceDirect等可以提供各个领域的学术论文和研究报告,可以通过学校或图书馆访问。

- 社交网络:社交网络如LinkedIn、Twitter等可以提供行业内的最新动态、趋势和观点,可以通过关注行业专家和组织获取。

五、数据行业分类?

归纳起来可以按照以下方式进行分类:

(1)从大数据处理的过程来分:包括数据存储、数据挖掘分析、以及为完成高效分析挖掘而设计的计算平台,它们完成数据采集、ETL、存储、结构化处理、挖掘、 分析、预测、应用等功能。

(2)从大数据处理的数据类型来划分:可以分为针对关系型数据、非关系型数据(图数据、文本数据、网络型数据等)、半结构化数据、混合类型数据处理的技术平台。

(3)从大数据处理的方式来划分:可以分为批量处理、实时处理、综合处理。其中批量数据是对成批数据进行一次性处理,而实时处理(流处理)对处理的延时有严格的要求,综合处理是指同时具备批量处理和实时处理两种方式。

(4)从平台对数据的部署方式看:可以分为基于内存的、基于磁盘的。前者在分布式系统内部的数据交换是在内存中进行,后者则是通过磁盘文件的方式

六、行业分析框架不包括什么?

行业分析框架通常不包括以下内容:

具体企业的内部因素:行业分析框架不会涉及到某个企业的财务状况、管理能力、市场定位等方面的因素,这些因素通常需要通过企业分析来进行评估。

行业外部因素:行业分析框架不会涉及到技术创新、社会文化等方面的因素,这些因素通常需要通过宏观环境分析来进行评估。

具体市场细节:行业分析框架不会涉及到某个地区或某个细分市场的情况,这些细节通常需要通过市场调研和分析来进行评估。

七、企业数据采集分析框架?

Apache Flume。

Flume 是 Apache 旗下的一款开源、高可靠、高扩展、容易管理、支持客户扩展的数据采集系统。 Flume 使用 JRuby 来构建,所以依赖 Java 运行环境。

Flume 最初是由 Cloudera 的工程师设计,用于合并日志数据的系统,后来逐渐发展用于处理流数据事件。

Flume 设计成一个分布式的管道架构,可以看作在数据源和目的地之间有一个 Agent 的网络,支持数据路由。

每一个 agent 都由 Source,Channel 和 Sink 组成。

Source。

八、系统框架和数据库框架的区别?

系统框架是单际数因子。而数据库框架是双际数因子。

九、产业数据分类分级框架?

(1)二分法。主要依据占有大数据的情况,分为大数据产业和大数据衍生产业。大数据产业主要指自身生产数据或者获取数据的存储、分析、应用类产业。大数据衍生产业主要指从事大数据产业所需要的基础设施和技术支持类产业。

(2)三分法。主要依据数据的营销模式将大数据产业分为3类:①应用大数据进行用户信息行为分析,实现企业自身产品和广告推介的产业;②通过对大数据进行整合,为用户提供从硬件、软件到数据整体解决方案的企业;③出售数据产品和为用户提供具有针对性解决方案的服务产业。

(3)五分法。按照产业的价值模式分为大数据内生型价值模式、外生型价值模式、寄生型价值模式、产品型价值模式和云计算服务型价值模式。

十、数据分析报告框架都有哪些?

一、如何讲故事

要写好分析报告,就要先了解如何讲好数据故事,我们的数据分析报告就是一个数据故事。讲好一个故事,通常我们会按照一定的先后顺序,逻辑清晰、生动形象的一点点讲出来。

这样的故事线,通常的步骤是这样的:

STEP1:从通俗的故事开始

在看一些产品发布会或者公开的演讲时,演讲者通常会拿一个很通俗易懂的故事场景来开场,从而引入主题。

一般情况,我们在撰写报告时是不需要引入这样的故事的,只有在公开演讲时,为了不显突兀才会从讲故事开始。

STEP2:引入主题

通过对故事的讲解,一点点引导了主题,正式开始介绍主题。

STEP3:背景原因

在介绍主题后,我们会就主题进行背景原因介绍,主要的作用就是在介绍我们为什么会有后续的动作。

STEP4:目的

通过介绍背景原因,我们就可以让读者或者听众顺着我们的思路,知道我们发现的了什么问题,目的又是怎样的。

STEP5:思路

解释了前因,我们就要说明一下后续的一些论证思路是怎样的。这里就是在介绍分析框架。

STEP6:论证过程

讲解了大概的思路后,就可以具体的进行论证,一点点讲解思路框架的每一步是怎样验证并逐步发现问题的。

STEP7:结论

发现了问题就一定要有结论,这些结论是通过上一步的论证过程一点点得出来并汇总的。

STEP8:建议

最后呢,提出问题和结论,一定要给出对应的建议和结果。

大家在讲故事时,通常的顺序也是上面这样的,但也有可能只是给你引入话题,然后要去你自己去思考分析。至少在企业中,跟业务和管理层进行汇报时,整个汇报过程和思路是这样的。

二、报告开篇

开篇:包含标题页、目录和前言。

1、标题页

标题作为分析报告的开头,能决定读者是否有兴趣继续阅读下去。所以为了吸引读者,我们会看到很多新闻和文章标题都会用一些有噱头的内容,实际点进去会发现文章与内容严重不符。当然,我们不赞同在分析报告中也使用这种方法。

展示给读者的标题页,通常我们希望能达成如下目的:

    • 吸引读者,让读者有继续往下看的兴趣
    • 一下就能明白分析的主题
    • 能初步了解到主要的问题或结论

针对如上目的,虽然标题页不宜过长,需要在1-2行完成编写并且越短越好,所以针对标题,我们可以有如下几种命名方式:

(1)给出主要结论

  • 指的是在标题中直接给出关键结论
  • 例如:《提升A产品的市场占有率》

(2)提问式

  • 以提问的形式引出报告要分析的主要问题,引起读者的思考和注意力。
  • 例如:《为什么春节活动效果不佳》《客户流失后,去哪了》《为什么A产品销售利润高》

(3)说明主题

  • 主要是在介绍报告的主题,看着比较正式,通常此类标题不会包含我们的任何观点
  • 例如:《2022年公司经营情况分析》

(4)说明主要内容

  • 主要是在陈述数据现状和基本的事实
  • 例如:《我司销售额比去年增长30%》《2022年公司业务运营情况良好》

2、目录

目录:可帮助读者快速找到所需内容,也相当于数据分析大纲,可以体现出报告的分析思路。后续正文的论证过程也要按照这个目录来,所以目录设置要谨慎。

目录通常会有3-5个版块,不宜过多也不宜太少。但一些比较专业的研究性报告目录会很长,所以我们如果只是在做一些常规报告,不要存在太多版块,会降低读者的阅读兴趣。

在撰写报告框架时,我通常会先介绍一下业务和数据现状,让大家理解当前的情况。再针对现状进行具体分析,并针对分析中发现的问题和优化方案进行影响评估或者预测,最后一个版块则是给出结论和最终的建议。

3、前言

常规的分析报告一般不会存在这个版块,但是建议大家养成习惯去写。

前言版块,主要包含:分析背景、分析目的、分析思路。

1、分析背景:主要是解释此次分析的主要原因和意义

2、分析目的:主要是让读者了解此次分析的主要目的,能解决什么问题,具有什么效果

3、分析思路:主要是展示分析师在论证问题并给出结论的整个思维框架,通常会在此处告诉读者我们使用了哪些分析方法架

三、报告正文

正文:指的是我们具体的分析过程。正文会根据目录设置分层很多版块很多页,在每一页中我们通常都要遵循这个原则:结论先行,论据跟上

1、结论

在每一页的分析中,在页面最上面的通常是此页的分析结论,并且针对重要的数据和关键词,需要用高亮有突出性的颜色进行标注,让读者能快读看到重点。

2、论据

在页面展示的中间部分,主要展示一下能解释重要结论的图表信息。

3、备注

如果此页报告需要做一些特色解释,可以在页面最下方用小号字体进行备注说明,以此来解释页面信息。

四、报告结尾

结尾:包含:结论、建议、附录。

1、结论

结论,是根据前面的分析结果为依据来进行总结得到的。这一部分,是前面各版块重要结论的汇总整理,能让业务和管理人员直接了解所有结论。

2、建议

建议,是根据结论和业务现状来提出优化建议和方法。通常分析师给出的建议,主要还是以降本增效为目的。

3、附录

附录,只要去解释报告中的一些专业名词、计算方法、数据来源、指标说明、计算公式等等。并不要求每篇报告都有附录,附录是报告的补充说明,并不是必需的,应根据实际情况再考虑是否添加

oracle数据库哪些日志可以清理?
可穿戴 大数据
相关文章