数据库的group和group by的用法?

797科技网 0 2024-08-31 12:53

一、数据库的group和group by的用法?

在日常查询中,索引或其他数据查找的方法可能不是查询执行中最高昂的部分,例如:MySQL GROUP BY 可能负责查询执行时间 90% 还多。MySQL 执行 GROUP BY 时的主要复杂性是计算 GROUP BY 语句中的聚合函数。UDF 聚合函数是一个接一个地获得构成单个组的所有值。这样,它可以在移动到另一个组之前计算单个组的聚合函数值。当然,问题在于,在大多数情况下,源数据值不会被分组。来自各种组的值在处理期间彼此跟随。因此,我们需要一个特殊的步骤。

处理 MySQL GROUP BY让我们看看之前看过的同一张table: mysql> show create table tbl G *************************** 1. row *************************** Table: tbl Create Table: CREATE TABLE `tbl` ( `id` int(11) NOT NULL AUTO_INCREMENT, `k` int(11) NOT NULL DEFAULT '0', `g` int(10) unsigned NOT NULL, PRIMARY KEY (`id`), KEY `k` (`k`) ) ENGINE=InnoDB AUTO_INCREMENT=2340933 DEFAULT CHARSET=latin1 1 row in set (0.00 sec)

并且以不同方式执行相同的 GROUP BY 语句:

1、MySQL中 的 Index Ordered GROUP BY

mysql> select k, count(*) c from tbl group by k order by k limit 5;

+---+---+

| k | c |

+---+---+

| 2 | 3 |

| 4 | 1 |

| 5 | 2 |

| 8 | 1 |

| 9 | 1 |

+---+---+

5 rows in set (0.00 sec)

mysql> explain select k, count(*) c from tbl group by k order by k limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: index

possible_keys: k

key: k

key_len: 4

ref: NULL

rows: 5

filtered: 100.00

Extra: Using index

1 row in set, 1 warning (0.00 sec)

在这种情况下,我们在 GROUP BY 的列上有一个索引。这样,我们可以逐组扫描数据并动态执行 GROUP BY(低成本)。当我们使用 LIMIT 限制我们检索的组的数量或使用“覆盖索引”时,特别有效,因为顺序索引扫描是一种非常快速的操作。

如果您有少量组,并且没有覆盖索引,索引顺序扫描可能会导致大量 IO。所以这可能不是最优化的计划。

2、MySQL 中的外部排序 GROUP BY

mysql> explain select SQL_BIG_RESULT g, count(*) c from tbl group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 998490

filtered: 100.00

Extra: Using filesort

1 row in set, 1 warning (0.00 sec)

mysql> select SQL_BIG_RESULT g, count(*) c from tbl group by g limit 5;

+---+---+

| g | c |

+---+---+

| 0 | 1 |

| 1 | 2 |

| 4 | 1 |

| 5 | 1 |

| 6 | 2 |

+---+---+

5 rows in set (0.88 sec)

如果我们没有允许我们按组顺序扫描数据的索引,我们可以通过外部排序(在 MySQL 中也称为“filesort”)来获取数据。你可能会注意到我在这里使用 SQL_BIG_RESULT 提示来获得这个计划。没有它,MySQL 在这种情况下不会选择这个计划。

一般来说,MySQL 只有在我们拥有大量组时才更喜欢使用这个计划,因为在这种情况下,排序比拥有临时表更有效(我们将在下面讨论)。

3、MySQL中 的临时表 GROUP BY

mysql> explain select g, sum(g) s from tbl group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 998490

filtered: 100.00

Extra: Using temporary

1 row in set, 1 warning (0.00 sec)

mysql> select g, sum(g) s from tbl group by g order by null limit 5;

+---+------+

| g | s |

+---+------+

| 0 | 0 |

| 1 | 2 |

| 4 | 4 |

| 5 | 5 |

| 6 | 12 |

+---+------+

5 rows in set (7.75 sec)

在这种情况下,MySQL 也会进行全表扫描。但它不是运行额外的排序传递,而是创建一个临时表。此临时表每组包含一行,并且对于每个传入行,将更新相应组的值。很多更新!虽然这在内存中可能是合理的,但如果结果表太大以至于更新将导致大量磁盘 IO,则会变得非常昂贵。在这种情况下,外部分拣计划通常更好。请注意,虽然 MySQL 默认选择此计划用于此用例,但如果我们不提供任何提示,它几乎比我们使用 SQL_BIG_RESULT 提示的计划慢 10 倍 。您可能会注意到我在此查询中添加了“ ORDER BY NULL ”。这是为了向您展示“清理”临时表的唯一计划。没有它,我们得到这个计划: mysql> explain select g, sum(g) s from tbl group by g limit 5 G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: tbl partitions: NULL type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 998490 filtered: 100.00 Extra: Using temporary; Using filesort 1 row in set, 1 warning (0.00 sec)

在其中,我们获得了 temporary 和 filesort “两最糟糕的”提示。MySQL 5.7 总是返回按组顺序排序的 GROUP BY 结果,即使查询不需要它(这可能需要昂贵的额外排序传递)。ORDER BY NULL 表示应用程序不需要这个。您应该注意,在某些情况下 - 例如使用聚合函数访问不同表中的列的 JOIN 查询 - 使用 GROUP BY 的临时表可能是唯一的选择。

如果要强制 MySQL 使用为 GROUP BY 执行临时表的计划,可以使用 SQL_SMALL_RESULT 提示。

4、MySQL 中的索引基于跳过扫描的 GROUP BY前三个 GROUP BY 执行方法适用于所有聚合函数。然而,其中一些人有第四种方法。

mysql> explain select k,max(id) from tbl group by k G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: range

possible_keys: k

key: k

key_len: 4

ref: NULL

rows: 2

filtered: 100.00

Extra: Using index for group-by

1 row in set, 1 warning (0.00 sec)

mysql> select k,max(id) from tbl group by k;

+---+---------+

| k | max(id) |

+---+---------+

| 0 | 2340920 |

| 1 | 2340916 |

| 2 | 2340932 |

| 3 | 2340928 |

| 4 | 2340924 |

+---+---------+

5 rows in set (0.00 sec)

此方法仅适用于非常特殊的聚合函数:MIN() 和 MAX()。这些并不需要遍历组中的所有行来计算值。他们可以直接跳转到组中的最小或最大组值(如果有这样的索引)。如果索引仅建立在 (K) 列上,如何找到每个组的 MAX(ID) 值?这是一个 InnoDB 表。记住 InnoDB 表有效地将 PRIMARY KEY 附加到所有索引。(K) 变为 (K,ID),允许我们对此查询使用 Skip-Scan 优化。仅当每个组有大量行时才会启用此优化。否则,MySQL 更倾向于使用更传统的方法来执行此查询(如方法#1中详述的索引有序 GROUP BY)。虽然我们使用 MIN() / MAX() 聚合函数,但其他优化也适用于它们。例如,如果您有一个没有 GROUP BY 的聚合函数(实际上所有表都有一个组),MySQL 在统计分析阶段从索引中获取这些值,并避免在执行阶段完全读取表: mysql> explain select max(k) from tbl G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: NULL partitions: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL filtered: NULL Extra: Select tables optimized away 1 row in set, 1 warning (0.00 sec)

过滤和分组

我们已经研究了 MySQL 执行 GROUP BY 的四种方式。为简单起见,我在整个表上使用了 GROUP BY,没有应用过滤。当您有 WHERE 子句时,相同的概念适用: mysql> explain select g, sum(g) s from tbl where k>4 group by g order by NULL limit 5 G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: tbl partitions: NULL type: range possible_keys: k key: k key_len: 4 ref: NULL rows: 1 filtered: 100.00 Extra: Using index condition; Using temporary 1 row in set, 1 warning (0.00 sec)

对于这种情况,我们使用K列上的范围进行数据过滤/查找,并在有临时表时执行 GROUP BY。在某些情况下,方法不会发生冲突。但是,在其他情况下,我们必须选择使用 GROUP BY 的一个索引或其他索引进行过滤:

mysql> alter table tbl add key(g);

Query OK, 0 rows affected (4.17 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> explain select g, sum(g) s from tbl where k>1 group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: index

possible_keys: k,g

key: g

key_len: 4

ref: NULL

rows: 16

filtered: 50.00

Extra: Using where

1 row in set, 1 warning (0.00 sec)

mysql> explain select g, sum(g) s from tbl where k>4 group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: range

possible_keys: k,g

key: k

key_len: 4

ref: NULL

rows: 1

filtered: 100.00

Extra: Using index condition; Using temporary; Using filesort

1 row in set, 1 warning (0.00 sec)

根据此查询中使用的特定常量,我们可以看到我们对 GROUP BY 使用索引顺序扫描(并从索引中“放弃”以解析 WHERE 子句),或者使用索引来解析 WHERE 子句(但使用临时表来解析 GROUP BY)。根据我的经验,这就是 MySQL GROUP BY 并不总是做出正确选择的地方。您可能需要使用 FORCE INDEX 以您希望的方式执行查询。

二、vba excel如何快速group by 数据?

要快速在VBA Excel中对数据进行Group By操作,可以使用PivotTable功能来实现。首先,通过VBA代码将数据导入到新的工作表中,然后使用PivotTable功能将需要Group By的字段放入行标签和数据标签区域,以及对数据进行汇总的方式,最后将PivotTable生成的结果复制到原始数据表中。这样就可以快速实现在VBA Excel中对数据进行Group By操作,便于数据分析和汇总。

三、bs项目数据大怎么优化?

回答如下:优化BS项目数据的方法有很多,以下是一些常见的优化方法:

1. 数据压缩:对于大量的数据,可以使用数据压缩算法来减小数据的存储空间,例如使用gzip或zlib进行压缩。

2. 数据分片:将大数据集分成多个小片段,可以提高数据的处理速度。可以按照某种规则进行数据分片,例如按照时间、地理位置或其他特定的字段进行分片。

3. 数据索引:为数据集中的关键字段添加索引,可以加快数据的查询速度。索引可以根据查询需求来创建,例如创建唯一索引、组合索引或全文索引等。

4. 数据分区:将数据按照某种规则进行分区,可以提高数据的并发处理能力。可以按照时间、地理位置或其他特定的字段进行数据分区。

5. 数据缓存:使用缓存技术将经常访问的数据存储在内存中,可以提高数据的读取速度。可以使用内存数据库或缓存系统来实现数据缓存。

6. 数据清洗:对于大数据中的噪声数据或错误数据,进行清洗和修复,可以提高数据的质量。可以使用数据清洗工具或编写数据清洗脚本来清洗数据。

7. 并行计算:使用并行计算技术,将大数据集分成多个小任务进行并行处理,可以提高数据的处理速度。可以使用分布式计算框架或并行计算库来实现并行计算。

8. 数据压缩:对于传输过程中的大数据,可以使用数据压缩算法来减小数据的传输量,例如使用gzip或zlib进行压缩。

9. 数据存储优化:选择合适的数据存储方式,可以提高数据的读写性能。可以使用高性能数据库、分布式文件系统或列式存储等技术来优化数据存储。

10. 数据备份和恢复:对于大数据,进行定期的数据备份和恢复,可以保证数据的安全性和可靠性。可以使用数据备份工具或编写备份脚本来实现数据备份和恢复。

以上是一些常见的优化方法,具体的优化策略需要根据具体的项目需求和数据特点来确定。

四、数据库中的GROUP BY问题?

groupby就是按照不同的字段进行分组,数值可以实现汇总 例如数据库中有A表,包括学生,学科,成绩三个字段 数据库结构为 学生学科成绩 张三语文80 张三数学100 李四语文70 李四数学80 李四英语80 那么 select学生,sum(成绩)fromAgroupby学生; 得到如下结果 学生成绩 张三180 李四230 ============================================================== 如果考虑having 语句写成: select学生,sum(成绩)fromAgroupby学生having成绩=80; 得到结果就是这样的 学生成绩 张三80 李四160 用having比JOINON相对好理解一些,简单一些。

五、mysql为什么group by不能显示全部数据?

在日常查询中,索引或其他数据查找的方法可能不是查询执行中最高昂的部分,例如:MySQL GROUP BY 可能负责查询执行时间 90% 还多。MySQL 执行 GROUP BY 时的主要复杂性是计算 GROUP BY 语句中的聚合函数。UDF 聚合函数是一个接一个地获得构成单个组的所有值。这样,它可以在移动到另一个组之前计算单个组的聚合函数值。当然,问题在于,在大多数情况下,源数据值不会被分组。来自各种组的值在处理期间彼此跟随。因此,我们需要一个特殊的步骤。

处理 MySQL GROUP BY让我们看看之前看过的同一张table: mysql> show create table tbl G *************************** 1. row *************************** Table: tbl Create Table: CREATE TABLE `tbl` ( `id` int(11) NOT NULL AUTO_INCREMENT, `k` int(11) NOT NULL DEFAULT '0', `g` int(10) unsigned NOT NULL, PRIMARY KEY (`id`), KEY `k` (`k`) ) ENGINE=InnoDB AUTO_INCREMENT=2340933 DEFAULT CHARSET=latin1 1 row in set (0.00 sec)

并且以不同方式执行相同的 GROUP BY 语句:

1、MySQL中 的 Index Ordered GROUP BY

mysql> select k, count(*) c from tbl group by k order by k limit 5;

+---+---+

| k | c |

+---+---+

| 2 | 3 |

| 4 | 1 |

| 5 | 2 |

| 8 | 1 |

| 9 | 1 |

+---+---+

5 rows in set (0.00 sec)

mysql> explain select k, count(*) c from tbl group by k order by k limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: index

possible_keys: k

key: k

key_len: 4

ref: NULL

rows: 5

filtered: 100.00

Extra: Using index

1 row in set, 1 warning (0.00 sec)

在这种情况下,我们在 GROUP BY 的列上有一个索引。这样,我们可以逐组扫描数据并动态执行 GROUP BY(低成本)。当我们使用 LIMIT 限制我们检索的组的数量或使用“覆盖索引”时,特别有效,因为顺序索引扫描是一种非常快速的操作。

如果您有少量组,并且没有覆盖索引,索引顺序扫描可能会导致大量 IO。所以这可能不是最优化的计划。

2、MySQL 中的外部排序 GROUP BY

mysql> explain select SQL_BIG_RESULT g, count(*) c from tbl group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 998490

filtered: 100.00

Extra: Using filesort

1 row in set, 1 warning (0.00 sec)

mysql> select SQL_BIG_RESULT g, count(*) c from tbl group by g limit 5;

+---+---+

| g | c |

+---+---+

| 0 | 1 |

| 1 | 2 |

| 4 | 1 |

| 5 | 1 |

| 6 | 2 |

+---+---+

5 rows in set (0.88 sec)

如果我们没有允许我们按组顺序扫描数据的索引,我们可以通过外部排序(在 MySQL 中也称为“filesort”)来获取数据。你可能会注意到我在这里使用 SQL_BIG_RESULT 提示来获得这个计划。没有它,MySQL 在这种情况下不会选择这个计划。

一般来说,MySQL 只有在我们拥有大量组时才更喜欢使用这个计划,因为在这种情况下,排序比拥有临时表更有效(我们将在下面讨论)。

3、MySQL中 的临时表 GROUP BY

mysql> explain select g, sum(g) s from tbl group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 998490

filtered: 100.00

Extra: Using temporary

1 row in set, 1 warning (0.00 sec)

mysql> select g, sum(g) s from tbl group by g order by null limit 5;

+---+------+

| g | s |

+---+------+

| 0 | 0 |

| 1 | 2 |

| 4 | 4 |

| 5 | 5 |

| 6 | 12 |

+---+------+

5 rows in set (7.75 sec)

在这种情况下,MySQL 也会进行全表扫描。但它不是运行额外的排序传递,而是创建一个临时表。此临时表每组包含一行,并且对于每个传入行,将更新相应组的值。很多更新!虽然这在内存中可能是合理的,但如果结果表太大以至于更新将导致大量磁盘 IO,则会变得非常昂贵。在这种情况下,外部分拣计划通常更好。请注意,虽然 MySQL 默认选择此计划用于此用例,但如果我们不提供任何提示,它几乎比我们使用 SQL_BIG_RESULT 提示的计划慢 10 倍 。您可能会注意到我在此查询中添加了“ ORDER BY NULL ”。这是为了向您展示“清理”临时表的唯一计划。没有它,我们得到这个计划: mysql> explain select g, sum(g) s from tbl group by g limit 5 G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: tbl partitions: NULL type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 998490 filtered: 100.00 Extra: Using temporary; Using filesort 1 row in set, 1 warning (0.00 sec)

在其中,我们获得了 temporary 和 filesort “两最糟糕的”提示。MySQL 5.7 总是返回按组顺序排序的 GROUP BY 结果,即使查询不需要它(这可能需要昂贵的额外排序传递)。ORDER BY NULL 表示应用程序不需要这个。您应该注意,在某些情况下 - 例如使用聚合函数访问不同表中的列的 JOIN 查询 - 使用 GROUP BY 的临时表可能是唯一的选择。

如果要强制 MySQL 使用为 GROUP BY 执行临时表的计划,可以使用 SQL_SMALL_RESULT 提示。

4、MySQL 中的索引基于跳过扫描的 GROUP BY前三个 GROUP BY 执行方法适用于所有聚合函数。然而,其中一些人有第四种方法。

mysql> explain select k,max(id) from tbl group by k G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: range

possible_keys: k

key: k

key_len: 4

ref: NULL

rows: 2

filtered: 100.00

Extra: Using index for group-by

1 row in set, 1 warning (0.00 sec)

mysql> select k,max(id) from tbl group by k;

+---+---------+

| k | max(id) |

+---+---------+

| 0 | 2340920 |

| 1 | 2340916 |

| 2 | 2340932 |

| 3 | 2340928 |

| 4 | 2340924 |

+---+---------+

5 rows in set (0.00 sec)

此方法仅适用于非常特殊的聚合函数:MIN() 和 MAX()。这些并不需要遍历组中的所有行来计算值。他们可以直接跳转到组中的最小或最大组值(如果有这样的索引)。如果索引仅建立在 (K) 列上,如何找到每个组的 MAX(ID) 值?这是一个 InnoDB 表。记住 InnoDB 表有效地将 PRIMARY KEY 附加到所有索引。(K) 变为 (K,ID),允许我们对此查询使用 Skip-Scan 优化。仅当每个组有大量行时才会启用此优化。否则,MySQL 更倾向于使用更传统的方法来执行此查询(如方法#1中详述的索引有序 GROUP BY)。虽然我们使用 MIN() / MAX() 聚合函数,但其他优化也适用于它们。例如,如果您有一个没有 GROUP BY 的聚合函数(实际上所有表都有一个组),MySQL 在统计分析阶段从索引中获取这些值,并避免在执行阶段完全读取表: mysql> explain select max(k) from tbl G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: NULL partitions: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL filtered: NULL Extra: Select tables optimized away 1 row in set, 1 warning (0.00 sec)

过滤和分组

我们已经研究了 MySQL 执行 GROUP BY 的四种方式。为简单起见,我在整个表上使用了 GROUP BY,没有应用过滤。当您有 WHERE 子句时,相同的概念适用: mysql> explain select g, sum(g) s from tbl where k>4 group by g order by NULL limit 5 G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: tbl partitions: NULL type: range possible_keys: k key: k key_len: 4 ref: NULL rows: 1 filtered: 100.00 Extra: Using index condition; Using temporary 1 row in set, 1 warning (0.00 sec)

对于这种情况,我们使用K列上的范围进行数据过滤/查找,并在有临时表时执行 GROUP BY。在某些情况下,方法不会发生冲突。但是,在其他情况下,我们必须选择使用 GROUP BY 的一个索引或其他索引进行过滤:

mysql> alter table tbl add key(g);

Query OK, 0 rows affected (4.17 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> explain select g, sum(g) s from tbl where k>1 group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: index

possible_keys: k,g

key: g

key_len: 4

ref: NULL

rows: 16

filtered: 50.00

Extra: Using where

1 row in set, 1 warning (0.00 sec)

mysql> explain select g, sum(g) s from tbl where k>4 group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: range

possible_keys: k,g

key: k

key_len: 4

ref: NULL

rows: 1

filtered: 100.00

Extra: Using index condition; Using temporary; Using filesort

1 row in set, 1 warning (0.00 sec)

根据此查询中使用的特定常量,我们可以看到我们对 GROUP BY 使用索引顺序扫描(并从索引中“放弃”以解析 WHERE 子句),或者使用索引来解析 WHERE 子句(但使用临时表来解析 GROUP BY)。根据我的经验,这就是 MySQL GROUP BY 并不总是做出正确选择的地方。您可能需要使用 FORCE INDEX 以您希望的方式执行查询。

六、如何优化手机数据?

回答如下:以下是优化手机数据的一些方法:

1. 关闭自动更新:关闭应用程序的自动更新功能,只在 Wi-Fi 连接下更新应用程序。

2. 关闭后台应用程序:在不需要使用的应用程序后,使用任务管理器关闭后台应用程序。

3. 禁用自动同步:关闭应用程序的自动同步功能,手动同步数据。

4. 减少流量消耗:使用省流量模式、关闭视频自动播放、使用压缩浏览器等方法减少流量消耗。

5. 清除缓存:定期清除应用程序的缓存,释放存储空间。

6. 使用数据管理应用:安装数据管理应用程序,可以监控数据使用情况,提醒用户节省流量。

7. 使用 Wi-Fi 连接:在家或办公室等有 Wi-Fi 网络的地方,使用 Wi-Fi 连接,减少移动数据使用。

8. 调整应用程序设置:根据需要调整应用程序的设置,例如关闭应用程序的推送消息、限制应用程序的网络访问权限等。

七、数据库的group by有什么意义呢?

在日常查询中,索引或其他数据查找的方法可能不是查询执行中最高昂的部分,例如:MySQL GROUP BY 可能负责查询执行时间 90% 还多。MySQL 执行 GROUP BY 时的主要复杂性是计算 GROUP BY 语句中的聚合函数。UDF 聚合函数是一个接一个地获得构成单个组的所有值。这样,它可以在移动到另一个组之前计算单个组的聚合函数值。当然,问题在于,在大多数情况下,源数据值不会被分组。来自各种组的值在处理期间彼此跟随。因此,我们需要一个特殊的步骤。

处理 MySQL GROUP BY让我们看看之前看过的同一张table: mysql> show create table tbl G *************************** 1. row *************************** Table: tbl Create Table: CREATE TABLE `tbl` ( `id` int(11) NOT NULL AUTO_INCREMENT, `k` int(11) NOT NULL DEFAULT '0', `g` int(10) unsigned NOT NULL, PRIMARY KEY (`id`), KEY `k` (`k`) ) ENGINE=InnoDB AUTO_INCREMENT=2340933 DEFAULT CHARSET=latin1 1 row in set (0.00 sec)

并且以不同方式执行相同的 GROUP BY 语句:

1、MySQL中 的 Index Ordered GROUP BY

mysql> select k, count(*) c from tbl group by k order by k limit 5;

+---+---+

| k | c |

+---+---+

| 2 | 3 |

| 4 | 1 |

| 5 | 2 |

| 8 | 1 |

| 9 | 1 |

+---+---+

5 rows in set (0.00 sec)

mysql> explain select k, count(*) c from tbl group by k order by k limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: index

possible_keys: k

key: k

key_len: 4

ref: NULL

rows: 5

filtered: 100.00

Extra: Using index

1 row in set, 1 warning (0.00 sec)

在这种情况下,我们在 GROUP BY 的列上有一个索引。这样,我们可以逐组扫描数据并动态执行 GROUP BY(低成本)。当我们使用 LIMIT 限制我们检索的组的数量或使用“覆盖索引”时,特别有效,因为顺序索引扫描是一种非常快速的操作。

如果您有少量组,并且没有覆盖索引,索引顺序扫描可能会导致大量 IO。所以这可能不是最优化的计划。

2、MySQL 中的外部排序 GROUP BY

mysql> explain select SQL_BIG_RESULT g, count(*) c from tbl group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 998490

filtered: 100.00

Extra: Using filesort

1 row in set, 1 warning (0.00 sec)

mysql> select SQL_BIG_RESULT g, count(*) c from tbl group by g limit 5;

+---+---+

| g | c |

+---+---+

| 0 | 1 |

| 1 | 2 |

| 4 | 1 |

| 5 | 1 |

| 6 | 2 |

+---+---+

5 rows in set (0.88 sec)

如果我们没有允许我们按组顺序扫描数据的索引,我们可以通过外部排序(在 MySQL 中也称为“filesort”)来获取数据。你可能会注意到我在这里使用 SQL_BIG_RESULT 提示来获得这个计划。没有它,MySQL 在这种情况下不会选择这个计划。

一般来说,MySQL 只有在我们拥有大量组时才更喜欢使用这个计划,因为在这种情况下,排序比拥有临时表更有效(我们将在下面讨论)。

3、MySQL中 的临时表 GROUP BY

mysql> explain select g, sum(g) s from tbl group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: ALL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 998490

filtered: 100.00

Extra: Using temporary

1 row in set, 1 warning (0.00 sec)

mysql> select g, sum(g) s from tbl group by g order by null limit 5;

+---+------+

| g | s |

+---+------+

| 0 | 0 |

| 1 | 2 |

| 4 | 4 |

| 5 | 5 |

| 6 | 12 |

+---+------+

5 rows in set (7.75 sec)

在这种情况下,MySQL 也会进行全表扫描。但它不是运行额外的排序传递,而是创建一个临时表。此临时表每组包含一行,并且对于每个传入行,将更新相应组的值。很多更新!虽然这在内存中可能是合理的,但如果结果表太大以至于更新将导致大量磁盘 IO,则会变得非常昂贵。在这种情况下,外部分拣计划通常更好。请注意,虽然 MySQL 默认选择此计划用于此用例,但如果我们不提供任何提示,它几乎比我们使用 SQL_BIG_RESULT 提示的计划慢 10 倍 。您可能会注意到我在此查询中添加了“ ORDER BY NULL ”。这是为了向您展示“清理”临时表的唯一计划。没有它,我们得到这个计划: mysql> explain select g, sum(g) s from tbl group by g limit 5 G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: tbl partitions: NULL type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 998490 filtered: 100.00 Extra: Using temporary; Using filesort 1 row in set, 1 warning (0.00 sec)

在其中,我们获得了 temporary 和 filesort “两最糟糕的”提示。MySQL 5.7 总是返回按组顺序排序的 GROUP BY 结果,即使查询不需要它(这可能需要昂贵的额外排序传递)。ORDER BY NULL 表示应用程序不需要这个。您应该注意,在某些情况下 - 例如使用聚合函数访问不同表中的列的 JOIN 查询 - 使用 GROUP BY 的临时表可能是唯一的选择。

如果要强制 MySQL 使用为 GROUP BY 执行临时表的计划,可以使用 SQL_SMALL_RESULT 提示。

4、MySQL 中的索引基于跳过扫描的 GROUP BY前三个 GROUP BY 执行方法适用于所有聚合函数。然而,其中一些人有第四种方法。

mysql> explain select k,max(id) from tbl group by k G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: range

possible_keys: k

key: k

key_len: 4

ref: NULL

rows: 2

filtered: 100.00

Extra: Using index for group-by

1 row in set, 1 warning (0.00 sec)

mysql> select k,max(id) from tbl group by k;

+---+---------+

| k | max(id) |

+---+---------+

| 0 | 2340920 |

| 1 | 2340916 |

| 2 | 2340932 |

| 3 | 2340928 |

| 4 | 2340924 |

+---+---------+

5 rows in set (0.00 sec)

此方法仅适用于非常特殊的聚合函数:MIN() 和 MAX()。这些并不需要遍历组中的所有行来计算值。他们可以直接跳转到组中的最小或最大组值(如果有这样的索引)。如果索引仅建立在 (K) 列上,如何找到每个组的 MAX(ID) 值?这是一个 InnoDB 表。记住 InnoDB 表有效地将 PRIMARY KEY 附加到所有索引。(K) 变为 (K,ID),允许我们对此查询使用 Skip-Scan 优化。仅当每个组有大量行时才会启用此优化。否则,MySQL 更倾向于使用更传统的方法来执行此查询(如方法#1中详述的索引有序 GROUP BY)。虽然我们使用 MIN() / MAX() 聚合函数,但其他优化也适用于它们。例如,如果您有一个没有 GROUP BY 的聚合函数(实际上所有表都有一个组),MySQL 在统计分析阶段从索引中获取这些值,并避免在执行阶段完全读取表: mysql> explain select max(k) from tbl G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: NULL partitions: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL filtered: NULL Extra: Select tables optimized away 1 row in set, 1 warning (0.00 sec)

过滤和分组

我们已经研究了 MySQL 执行 GROUP BY 的四种方式。为简单起见,我在整个表上使用了 GROUP BY,没有应用过滤。当您有 WHERE 子句时,相同的概念适用: mysql> explain select g, sum(g) s from tbl where k>4 group by g order by NULL limit 5 G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: tbl partitions: NULL type: range possible_keys: k key: k key_len: 4 ref: NULL rows: 1 filtered: 100.00 Extra: Using index condition; Using temporary 1 row in set, 1 warning (0.00 sec)

对于这种情况,我们使用K列上的范围进行数据过滤/查找,并在有临时表时执行 GROUP BY。在某些情况下,方法不会发生冲突。但是,在其他情况下,我们必须选择使用 GROUP BY 的一个索引或其他索引进行过滤:

mysql> alter table tbl add key(g);

Query OK, 0 rows affected (4.17 sec)

Records: 0 Duplicates: 0 Warnings: 0

mysql> explain select g, sum(g) s from tbl where k>1 group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: index

possible_keys: k,g

key: g

key_len: 4

ref: NULL

rows: 16

filtered: 50.00

Extra: Using where

1 row in set, 1 warning (0.00 sec)

mysql> explain select g, sum(g) s from tbl where k>4 group by g limit 5 G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: tbl

partitions: NULL

type: range

possible_keys: k,g

key: k

key_len: 4

ref: NULL

rows: 1

filtered: 100.00

Extra: Using index condition; Using temporary; Using filesort

1 row in set, 1 warning (0.00 sec)

根据此查询中使用的特定常量,我们可以看到我们对 GROUP BY 使用索引顺序扫描(并从索引中“放弃”以解析 WHERE 子句),或者使用索引来解析 WHERE 子句(但使用临时表来解析 GROUP BY)。根据我的经验,这就是 MySQL GROUP BY 并不总是做出正确选择的地方。您可能需要使用 FORCE INDEX 以您希望的方式执行查询。

八、CATIA模型优化,数据简化?

igs和STP文件格式优化都不多,CGR格式最小,不过不是最好办法。

个人认为最佳办法是将装组装后的pruduct场景转成part格式,再将part转成CGR格式

方法:开始--基础结构--product data fillting-product to product 或者product to part

两种不防都试试。

九、数据优化真的管用吗?

数据优化确实管用。

数据优化是指对数据进行清洗、整理、加工、分析等一系列操作,以提高数据的质量和价值。

数据优化可以帮助企业更好地了解市场、客户和业务,从而制定更有效的决策和战略,提高企业的竞争力和盈利能力。

原因如下:

1. 数据优化可以提高数据的准确性和完整性,避免因数据错误或缺失而导致的决策偏差和损失。

2. 数据优化可以发现数据中的规律和趋势,帮助企业更好地了解市场和客户需求,从而制定更符合市场需求的产品和服务。

3. 数据优化可以帮助企业发现业务中的瓶颈和问题,从而优化业务流程和提高效率。

4. 数据优化可以帮助企业发现新的商机和机会,从而开拓新的市场和业务领域。

操作步骤如下:

1. 数据清洗:

对数据进行去重、去噪、去错等操作,以提高数据的准确性和完整性。

2. 数据整理:

对数据进行分类、归纳、整合等操作,以便于后续的分析和应用。

3. 数据加工:

对数据进行计算、统计、分析等操作,以发现数据中的规律和趋势。

4. 数据分析:

对数据进行可视化、报表、图表等操作,以便于企业更好地了解数据和发现问题。

5. 数据应用:

将数据应用于企业的决策和业务中,以提高企业的竞争力和盈利能力。

十、怎么优化信用大数据?

优化信用大数据可以通过以下几个步骤来实现

1. 数据清洗和预处理对原始数据进行清洗和预处理,包括去除重复数据处理缺失值和异常值等,确保数据的准确性和完整性。

2. 特征选择和提取根据业务需求和模型建立的目标,选择合适的特征进行提取和选择,以减少数据维度和提高模型的效果。

3. 数据集划分将数据集划分为训练集验证集和测试集,用于模型的训练调优和评估。

4. 模型选择和建立根据业务需求和数据特点,选择合适的模型进行建立,如决策树随机森林神经网络等。

5. 模型训练和调优使用训练集对模型进行训练,并通过验证集进行模型参数的调优,以提高模型的准确性和泛化能力。

6. 模型评估和应用使用测试集对模型进行评估,包括准确率召回率F1值等指标,以评估模型的性能。最后将优化后的模型应用于实际业务中,进行信用大数据的分析和预测。

以上是优化信用大数据的一般步骤,具

php返回数据长度
vivo高德导航数据下载?
相关文章