大数据分析特点?
500
2024-04-23
在数字化时代,大数据已经渗透进各个行业,而在健康医疗领域,大数据的应用正日益受到重视和探索。健康医疗大数据应用是指通过收集、整合、分析医疗健康领域的海量数据,从中挖掘出有价值的信息和内在规律,为医疗决策、疾病预防、诊断和治疗提供支持和指导。
在当今社会,健康医疗大数据应用已经取得了许多实质性成果。首先,通过大数据分析,医疗机构可以实现个性化治疗和诊断,根据患者的基因信息、生活习惯、疾病历史等个体化因素,制定针对性更强的治疗方案,提高治疗效果和患者满意度。其次,健康医疗大数据应用还有助于医疗资源的合理配置和管理,通过对病例、就诊信息、医疗费用等数据的分析,可以更好地预测疾病的发展趋势,科学决策医疗资源的分配和利用。
未来,健康医疗大数据应用的发展前景十分广阔。随着医疗技术的不断创新和进步,大数据在医疗领域的应用将变得越来越普遍和深入。基于大数据的智能医疗系统将更加智能化和个性化,有望为医患双方提供更加便捷、高效的医疗服务。同时,健康医疗大数据应用也将推动医疗行业的转型升级,促进医疗卫生体系的健康发展,为人类的健康福祉作出更大贡献。
尽管健康医疗大数据应用前景广阔,但也面临着诸多挑战。首先,数据的质量和安全性一直是大数据应用面临的难题,特别是医疗数据涉及个人隐私和敏感信息,如何确保数据的安全性和隐私性是当前亟需解决的问题之一。其次,在数据采集和整合方面,由于医疗数据来源多样且分散,如何实现数据的有效整合和共享也是健康医疗大数据应用的挑战之一。
为了应对以上挑战,需要采取一系列措施和解决方案。首先,加强数据安全和隐私保护意识,建立完善的数据管理和安全机制,包括数据加密、权限控制、合规审查等措施,确保医疗数据的安全可靠。其次,建立统一的数据标准和格式,推动医疗机构和科研单位之间的数据共享与交流,提高数据利用的效率和水平。
此外,还可以借助先进的技术手段,如人工智能、区块链等技术,加强对医疗大数据的分析和挖掘,提高数据处理和应用的智能化和精准度,为医疗决策提供更可靠的支持和指导。
健康医疗大数据应用作为数字化时代医疗领域的重要创新,不仅为提升医疗服务质量和水平提供了技术支持,也将为医疗行业的发展带来新的机遇和挑战。在未来的发展中,我们需要不断探索和创新,加强数据安全保护和技术应用,推动健康医疗大数据应用的深入发展与应用,为人类健康事业的进步贡献力量。
健康医疗大数据应用领域非常广泛,包括但不限于以下几个方面:
1. 疾病预测和预防:通过分析大量的医疗数据,可以预测疾病的发生和发展,从而提前进行预防。
2. 个性化医疗:通过对个体的基因、生活习惯等数据进行分析,可以为每个人提供个性化的健康管理和治疗方案。
3. 药物研发:通过对大量的临床试验数据进行分析,可以加速新药的研发进程。
4. 医疗服务优化:通过对医疗服务的数据进行分析,可以提高医疗服务的效率和质量。
5. 医疗保险:通过对大量的医疗保险数据进行分析,可以更准确地评估风险,从而提供更合理的保险产品。
6. 公共卫生:通过对大量的公共卫生数据进行分析,可以更好地预防和控制传染病的发生。
至于你提到的语音识别领域,虽然它与健康医疗大数据有一定的关联,例如在电子病历的录入和查询中可以使用语音识别技术,但并不直接属于健康医疗大数据的应用领域。
随着互联网信息技术的迅猛发展和深入应用,数据的数量、规模不断扩大,一个新概念——“大数据”迅速风靡各行各业。来自互联网、人工智能领域大鳄回头一瞅医疗,咋还这么落后呢。于是,“大数据赋能医疗”狂潮席卷三界。实际情况并不如他们期望的那般美好,甚至还有点儿一地鸡毛。他们往往痛苦于那些从医院得来的的数据质控之糟糕、“数据垃圾”之堆积。这些都需要花费很大力气去做“数据治理”、“数据标准化”云云,然而谁也无法放弃,因为生怕错过好!多!亿!
各种医疗数据宛如“鸡肋”这些所谓的“大数据”,往往是“一大堆数据”。这些医疗数据大多数来自院内信息系统(如HIS,LIS,PACS等),这些系统是服务于诊疗流程的,采集的目的是基于管理的需要,而非科研。很多情况下这些资料不够完全,缺乏一些必要数据或数据质量不够。举个例子,医院数据库通常记录的是处方药物的信息,不能反映患者是取药并服药。 这些病历包括患者既往史、现病史、吸烟饮酒史、门诊记录(症状、体征和诊断)、门诊手术、入院记录、出院总结等等。你听,是住院医师疯狂码字的声音。这些都是非结构化数据,如何把他们转变可以用于科研的结构化数据,每家医疗大数据公司都有自己的神技,机器学习、深度学习、自然语言、知识图谱云云。结构化的准确度,咳咳,此处不表。 图表炫酷完美“TO领导“那么真的可以说这些数据没有一点点儿用吗?好像还真有。必须说大数据行业的BI可视化页面都受了海尔空调感染,科技蓝呀!各种维度展示:这样的:
这样的:
和这样的:
(感觉美学也需要加强...)加上“患者病历360度全景视图”、“患者就诊事件时间轴”、“近n年就诊患者的三间分布”等高端大气上档次的词汇不绝于耳,非常适合向领导汇报和产品宣讲等场合。但是,这些真的是临床研究中的需求吗?是行业的痛点吗? 看来可能目前还不全是。比如现在各大科研平台都有的统计分析功能模块,通过点选统计方法,秒级返回统计结果(probably not)、三线图,感觉离科研文章result section差得就是一根灵活手指。但为什么别的统计分析软件像SAS、SPSS、Stata、R studio等都各有复杂之处。有coding有逻辑,有对数据格式、质量的要求,因为确实很复杂,有各种参数需要调整。所以产品经理、工程师在开发过程中还是要回归临床科研,多聆听市场痛点,没准需要解决的并不是统计软件,而是业务流程呢。 一大波RWS正赶来救场2019年,“真实世界研究”极速蹿红。这源于当年4月,辉瑞的爱博新获FDA批准男性乳腺癌新适应症,成为第一例仅基于真实世界证据(RWE)获批的新药物适应症;5月,CDE发布《真实世界证据支持药物研发的基本考虑(征求意见稿)》。这一新概念又给医疗大数据淘金者打了一剂强心针,增强了”这海量医疗数据里一定有金子“的信念感。脏乱差=垃圾???不,脏乱差=真实!!! 谁是真正的“救场王”数据永远是根据观察、观点、立场和理论而来的。如果没有理论,没有观察的角度,就不存在数据。我拿出一个苹果,要你写下关于这个苹果的数据,把这个苹果给记录下来,你马上就会问:薛老师,你要记录什么呢?是它的形状、色泽、甜味、重量、硬度,还是别的什么维度呢?你必须先有一个维度,才可能有记录下来的数据。 所以不存在什么纯粹的、没有立场的、不从任何理论角度出发的数据。也就是说,我们在进行大数据收集的时候,本身就需要理论的创新、角度的创新、维度的创新。你得先有想法、先有角度,才会有数据。(此处致敬薛兆丰老师)
临床研究数据同理,首先得是基于临床研究的。关于临床研究的设计本身就有一套方法论,那就是流行病学,而且发展多年才成为今天的模样(得从1840s末期的伦敦霍乱说起。。。)
因此,“以数据分析研究医学”“以研究结果促进健康”这件事情,并不是在大数据火了一把之后,才开始出现。可能互联网人士对医疗领域的业务细分没有太多了解,他们眼里的医学只是临床医学,对循证医学等其他不太了解,对临床数据如何最终变为医疗决策证据的套路一无所知,才会觉得把“数据”和“医学”结合在一起,这件事情很创新很有搞头,一片市场空白。 而对于临床数据的问题,流行病学提供了解决思路:那是一整套的花式控制混杂因素、最大化减少偏倚从而尽量避免错误结论的措施。 另外,RWS和传统临床研究的区别不是研究设计和研究方法,而是研究实施场景。“真实世界研究”是对药物监管过程而言,监管部门接受了新的临床研究实施场景,或为一些特殊情况的药品审评提供了新的思路。而对于真正的研究者,请大家抛开所谓定义的桎梏,回归初心。只要我们科学的制定研究方案,尽可能全面的收集样本,用尽可能完善的统计学方法校正混杂和偏倚,得到尽可能客观的数据,那我们就是在进行高质量的研究,产生真正有益于行业的证据。韩梅梅冬日有感2020-11一群热爱临床研究的年轻人欢迎咨询科研客服Wechat:medatalkEmail:medatalk@163.com
就业率很高,每年在95%-98.5%。
大数据在医疗健康领域已经有了非常丰富的应用场景,不管是优质资源的下沉还是眼下正在进行的医改,大数据的引入都可以助一臂之力。如今的医疗健康产业正在从以治病为中心转向以健康为重,一个万亿元规模的市场正在形成。健康医疗大数据的应用发展,将带来医疗模式的深刻变革,对疾病的预防、诊断、治疗及居民健康管理产生深刻影响,提升健康医疗服务的效率和质量,培育新业态和经济新增长点,推动医药、金融、物流、养老、保险、教育、健身等产能释放,带来健康产业加快升级。
保健养生,预防疾病,医疗单位等介绍
1. 数据采集:通过各种手段收集和整理医疗健康领域的大数据,包括患者的病历、诊断报告、医药销售记录、医保数据等。
2. 数据清洗和预处理:对采集到的大数据进行处理和清洗,去除重复数据、异常数据和缺失数据,并进行结构优化和规范化,以便批量处理和挖掘。
3. 数据存储:将清洗后的数据存储到相应的数据仓库或云计算平台,以方便后续的数据分析和处理。
4. 数据分析和挖掘:运用数据挖掘技术,如关联分析、聚类分析、决策树等,对大数据进行深入分析和挖掘,从中发现潜在的信息和规律,并提供决策支持和策略指导。
5. 数据可视化和应用:将分析挖掘结果以可视化的方式呈现,如报表、图表、地图等,提供给医疗机构、患者、医保部门等相关方使用,用于优化医疗服务、预测疾病风险、制定政府政策等。
综上所述,健康医疗大数据的处理与挖掘是一项复杂而重要的工作,必须运用现代化技术和方法,将海量的数据转化为有用的信息和知识,进而为医疗卫生行业提供更加精准、高效和个性化的服务。
1 健康医疗常识是非常重要的,不仅可以帮助我们更好地维护身体健康,还可以有效预防和治疗疾病。2 健康医疗常识的重要性有以下首先,了解人体的基本构造和功能可以让我们更好地预防疾病;其次,学习一些基本的急救技能可以在紧急情况下挽救生命;还有,提高疾病防范的意识可以降低生病的风险,减轻医疗压力。3 想要学习健康医疗常识,我们可以从以下几个方面入手:阅读医疗类和健康类的书籍和文章,例如《人体内科学》、《常见疾病护理手册》等;关注医学健康方面的媒体,如健康杂志和医学新闻等;参加健康管理课程或者医疗培训班,从专业的医生和护士那里学习医疗知识和技巧。
北方健康医疗大数据公司靠谱。
医疗大数据产业的发展由价值医疗驱动(即医疗服务质量与医疗成本的双赢),其潜在价值空间巨大,且产生于具体的应用场景。医疗大数据的服务对象可为居民、医疗服务机构、科研机构、医疗保险管理机构和商保公司、公共健康管理部门等。
虽然我国健康医疗大数据起步较晚,但以微医为代表的医疗健康科技企业在产业链上的发力,加上政府、市场、资本的加码,使得医疗大数据市场不断朝利好方向推进。2019年中国医疗行业内医疗信息化投资总额为1456亿元。
医疗健康领域的大数据主要有四个来源:
1、制药企业/生命科学
2、临床决策支持及其他临床应用(包括诊断相关影像信息)
3、费用报销、利用率和欺诈监管
4、患者行为/社交网络也就是说,不管是来自制药企业的数据,还是来着临床、社保或是患者的数据都可被当作医疗健康大数据的来源。
如下
1、远程会诊
智慧医疗依托网络高速率的特性,可实现远程高清会诊和医学影像数据的高速传输与共享,并让专家能随时随地开展会诊,促进优质医疗资源下沉。
2、远程超声
超声的检查方式很大程度上依赖医生的扫描手法,基层医院往往缺乏优秀的超声医生,通过智慧医疗系统,能建立高清无延迟的远程超声系统,充分发挥优质医院专家优质诊断能力,实现跨区域、跨医院之间的的业务指导、质量管控。
3、远程手术
利用医工机器人和高清音视频交互系统,远端专家可以对基层医疗机构的患者进行及时的远程手术救治。智慧医疗还能建立上下级医院间的专属通讯通道, 有效保障远程手术的稳定性、实时性和安全性,让专家随时随地掌控手术进程和病人情况。
4、应急救援
在现场没有专科医生或全科医生的情况下,通过无线网络能够将患者生命体征和危急报警信息传输至远端专家侧,并获得专家远程指导,实现应急救援;远程监护也能够使医院尽快掌握患者病情,提前制定急救方案并进行资源准备,实现院前急救与院内救治的无缝对接。
5、远程示教
通过智慧医疗系统,能面向医疗卫生技术人员进行教育培训,其形式主要有会议讲座、病例讨论、技术操作示教、培训研讨、论文与成果发表等。
6、远程监护
利用无线通信技术辅助医疗监护,实现对患者生命体征进行实时、连续和长时间的监测,并将获取的生命体征数据和危急报警信息以无线通信方式传送给医护人员。
7、智慧导诊
医院通过部署采用云-网-机结合的智慧导诊机器人,提供基于自然语义分析的人工智能导诊服务,能提高医院的服务效率,改善服务环境,减轻大厅导诊台护士的工作量,提高导诊效率。
8、移动医护
在日常查房护理的基础上,医护人员通过智慧医疗系统,可以实现影像数据和体征数据的移动化采集和高速传输、移动高清会诊,提高查房和护理服务的质量和效率。在放射科病房、传染病房等特殊病房,移动医护对于保护医务人员安全很有帮助。
9、智慧院区管理
患者体征实时监测、院内人员安全管理、医疗设备全生命周期管理是智慧医院建设中的共同诉求,智慧医疗系统通过物联网技术,构建院内医疗物联网,有机链接医疗设备,提升医院管理效率和患者就医体验。
10、AI辅助诊疗
智慧医疗方案以 PACS 影像数据为依托,通过大数据+人工智能技术方案,构建 AI 辅助诊疗应用,对影像医学数据进行建模分析,对病情、病灶进行分析,为医生提供决策支撑,提升医疗效率和质量。