大数据分析特点?
500
2024-04-23
区别:作用不一样
HDFS是分布式文件系统,管理的是存放在多个硬盘上的数据文件,而Hbase管理的是类似于key—value映射的表。
Hbase底层仍然依赖HDFS来作为其物理存储,并且还需要Zookeeper协助提供部分配置服务,包括维护元信息和命名空间等
数据存储技术HDFS
一、概述
1.1 分布式文件系统(DFS)的概念和作用
1.2 HDFS概述
二、HDFS的相关概念
2.1 块
2.2 NameNode
2.3 Secondary NameNode
2.4 DataNode
三、HDFS体系架构与原理
3.1 HDFS体系结构
3.2 HDFS高可用机制
hdfs是数据存储组件。HDFS 全称是 Hadoop Distribute File System,是Hadoop进行数据存储的核心组件,作为最底层的分布式存储服务存在。分布式文件系统解决的问题就是大数据存储。它们是横跨在多台计算机上的存储系统。HDFS 支持传统的层次型文件组织结构。用户或者应用程序可以创建目录,然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数现有的文件系统类似:用户可以创建、删除、移动或重命名文件。
负责“hdfs”和“数据存储”的程序是HDFS。
Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodityhardware)上的分布式文件系统。
它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。
运行在HDFS之上的程序有很大量的数据集。典型的HDFS文件大小是GB到TB的级别。所以,HDFS被调整成支持大文件。它应该提供很高的聚合数据带宽,一个集群中支持数百个节点,一个集群中还应该支持千万级别的文件。
大部分的HDFS程序对文件操作需要的是一次写多次读取的操作模式。一个文件一旦创建、写入、关闭之后就不需要修改了。
这个假定简单化了数据一致的问题和并使高吞吐量的数据访问变得可能。一个Map-Reduce程序或者网络爬虫程序都可以完美地适合这个模型。
HDFS与传统数据存储对比主要特点包含
A.数据冗余,硬件容错
B.流式的数据访问
C.适合存储大量大文.
传统的分布式存储,是按每个文件的大小,平分,然后放入特定数量的server中,这样随着每个文件的大小不同,平分后的大小也不同,进而导致每个server中实际存储的数据大小也不同(有较大差异),这样就会导致1 存储负载不均衡 2 网络宽带不均衡 的现象;HDFS的文件系统,是按块为大小,将每个文件(即使大小不同),都分成若干个块,然后将块,平均分配到每个server中(相当于粒度更小,之前是石头为单位,现在是沙子为单位),这样,就会解决传统分布式fs的两个问题。(虽然会有文件末尾的块不是整块(小于128MB),但这点差异很小,可以忽略不计)。
hdfs是数据存储技术。
Hadoop分布式文件系统(HDFS)是一种分布式文件系统,设计用于在商用硬件上运行。它与现有的分布式文件系统有许多相似之处。但是,与其他分布式文件系统的差异很大。HDFS具有高度容错能力,旨在部署在低成本硬件上。HDFS提供对应用程序数据的高吞吐量访问,适用于具有大型数据集的应用程序。
HDFS是Hadoop分布式文件系统,可以存储大量的数据。Hive和HBase都是建立在Hadoop之上的数据存储和处理系统,它们可以与HDFS进行交互,实现对HDFS中数据的查询和操作。具体地说,Hive可以通过HiveQL语言来查询和操作HDFS中的数据。HiveQL语言类似于SQL语言,可以直接访问HDFS中的数据,将其作为关系型数据库中的表进行操作。Hive会将HiveQL语句转换为MapReduce作业,在Hadoop集群上运行,最终将结果返回给用户。
而HBase则是一个分布式的NoSQL数据库,它可以直接在HDFS上存储数据,并提供快速的读写访问。HBase使用HDFS作为其底层存储系统,并提供了一些列API和工具,使得用户可以直接访问HDFS中的数据。用户可以通过HBase的API来查询和操作HDFS中的数据,也可以通过HBase Shell来进行交互式的查询和操作。
综上所述,Hive和HBase都可以与HDFS进行交互,用户可以通过它们来查询和操作HDFS中的数据。具体使用哪种方式,需要根据实际情况和需求来选择。
hdfs元数据存储格式有如下几种:
1.sequencefile,key—value格式
2.textfile,行式文本文件
3.rcfile,行列混合存储
4.orc,列式存储
5.parquet,列式存储
负责“hdfs”和“数据存储”的程序是HDFS。
Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodityhardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。运行在HDFS之上的程序有很大量的数据集。典型的HDFS文件大小是GB到TB的级别。所以,HDFS被调整成支持大文件。它应该提供很高的聚合数据带宽,一个集群中支持数百个节点,一个集群中还应该支持千万级别的文件。大部分的HDFS程序对文件操作需要的是一次写多次读取的操作模式。一个文件一旦创建、写入、关闭之后就不需要修改了。这个假定简单化了数据一致的问题和并使高吞吐量的数据访问变得可能。一个Map-Reduce程序或者网络爬虫程序都可以完美地适合这个模型。HDFS(Hadoop Distributed File
System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。集群不一定是分布式的,但是分布式一定是集群。
HDFS 的设计适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据 分析,并不适合用来做网盘应用。