传统软件与智能软件区别?

797科技网 0 2024-11-17 06:55

一、传统软件与智能软件区别?

传统软件一般通过硬盘磁盘等固体介质或者以软件下载安装的方式交互客户,然后由技术人员完成服务器和客户端的安装以及一系列的配置等。

而智能软件客户不需要安装任何类似普通模式的客户端软件,只要有设备能够连接并浏览互联网,客户就可以“随时随地”通过手机、电脑、IPAD等多种方式接入软件系统,从而进行操作和管理。

二、与传统数据相比 大数据技术特点?

大数据具有灵活性高,透明度大,范围广,影响力强

三、大数据安全与传统数据安全的不同?

大数据安全是国家大数据中心管理的,而传统数据是某个软件的应用

四、传统数据库与数据库的区别?

传统数据库和数据仓库其实是及其相似的,都是通过某个软件或者框架,基于某种数据模型来组织、管理数据。

数据仓库其实是一种特殊的数据库,它擅长大数据量查询分析,数据加工,存储。而传统数据库更加擅长事务处理,增删改查。

传统数据库保存当下数据,而数据仓库仓库保存了历史数据所有状态。

传统数据库会出现频繁数据更新。而数据仓库提取加工数据用来反哺业务,提供分析决策。

传统数据库擅长事务处理(OLTP)而数据仓库擅长数据分析。

传统数据库主要遵从范式模型(1NF,2NF,3NF,等等),从而尽可能减少数据冗余,保证引用完整性;而数据仓库强调数据分析的效率,复杂查询的速度,数据之间的相关性分析,所以在数据库模型上,数据仓库喜欢使用多维模型,从而提高数据分析的效率。

传统数据库一般是明细数据,而数据仓库包含一些汇总数据。

五、简述大数据安全与传统数据安全的不同?

大数据的安全考量远比传统数据复杂得多了!尤其是在单位时间内对大量数据的处理上,相对于传统数据处理的单一性,在设备,算力以及连接性,需要有更完整的统一标准与体系。

大数据最重要的价值在于体现“准确高效的决策支持”。从数据的采集,预处理,到分析,挖掘,终至结果展现,每一个环节的数据之运算,传输,交换,验证都需要经过严密的“授权”,“加解密”的处理,才能保证数据的准确性。

六、传统数据库与新型数据库对比?

传统数据库

以关系型数据库为代表的传统数据库以完善的关系代数理论作为基础,有严格的标准,支持事务的ACID四中特性,借助索引机制可以实现高效的查询、技术成熟,有专业公司的技术支持。

劣势就是可扩展性比较差,无法较好的支持海量数据存储。数据模型过于死板、无法较好支持Web2.0应用,事务机制影响力系统的整体性能。

新型数据库

新型数据库可以支持超大规模数据存储,灵活的数据模型可以很好的支持Web2.0应用,具有强大的横向扩展能力等。

七、简述传统数据挖掘技术与现在数据挖掘技术?

1、传统数据挖掘技术都是基于集中式的底层软件架构开发,难以并行化,因而在处理TB级以上数据的效率低。其次是数据分析精度难以随着数据量提升而得到改进,特别是难以应对非结构化数据。

2、现代数据挖掘技术是指20世纪80年代末所出现的数据挖掘技术,这些数据挖掘技术大多可以从数据仓库中提取人们所感兴趣的、事先不知的、隐含在数据中的有用的信息和知识,并将这些知识用概念、规则、规律和模式等方式展示给用户,使用户得以解决信息时代中的“数量过量,信息不足”的矛盾。现代数据挖掘技术应该是从数据库中知识发现技术(KDD)研究的起步,知识发现技术是随着数据库开始存储了大量业务数据,并采用机器学习技术分析这些数据、挖掘这些数据背后的知识而发展起来的。

八、devops与传统软件开发的区别?

DevOps(英文Development和Operations的组合)是一组过程、方法与系统的统称,用于促进开发(应用程序/软件工程)、技术运营和质量保障(QA)部门之间的沟通、协作与整合。它的出现是由于软件行业日益清晰地认识到:为了按时交付软件产品和服务,开发和运营工作必须紧密合作。 可以把DevOps看作开发(软件工程)、技术运营和质量保障(QA)三者的交集。 传统的软件组织将开发、IT运营和质量保障设为各自分离的部门。在这种环境下如何采用新的开发方法(例如敏捷软件开发),这是一个重要的课题:按照从前的工作方式,开发和部署不需要IT支持或者QA深入的、跨部门的支持,而却需要极其紧密的多部门协作。然而DevOps考虑的还不止是软件部署。它是一套针对这几个部门间沟通与协作问题的流程和方法。

九、传统的数据存储与管理技术有哪些?

(1)顺序存储方法: 该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。

(2)链接存储方法: 该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。

(3)索引存储方法: 该方法通常在储存结点信息的同时,还建立附加的索引表。 索引表由若干索引项组成。若每个结点在索引表中都有一个索引项,则该索引表称之为稠密索引(Dense Index)。若一组结点在索引表中只对应一个索引项,则该索引表称为稀疏索引(Spare Index)。

(4)散列存储方法 : 该方法的基本思想是:根据结点的关键字直接计算出该结点的存储地址。散列的数据访问速度要高于数组,因为可以依据存储数据的部分内容找到数据在数组中的存储位置,进而能够快速实现数据的访问,理想的散列访问速度是非常迅速的,而不像在数组中的遍历过程,采用存储数组中内容的部分元素作为映射函数的输入,映射函数的输出就是存储数据的位置,这样的访问速度就省去了遍历数组的实现,因此时间复杂度可以认为为O(1),而数组遍历的时间复杂度为O(n)。

十、hdfs与传统数据存储对比主要特点?

HDFS与传统数据存储对比主要特点包含

A.数据冗余,硬件容错

B.流式的数据访问

C.适合存储大量大文.

传统的分布式存储,是按每个文件的大小,平分,然后放入特定数量的server中,这样随着每个文件的大小不同,平分后的大小也不同,进而导致每个server中实际存储的数据大小也不同(有较大差异),这样就会导致1 存储负载不均衡 2 网络宽带不均衡 的现象;HDFS的文件系统,是按块为大小,将每个文件(即使大小不同),都分成若干个块,然后将块,平均分配到每个server中(相当于粒度更小,之前是石头为单位,现在是沙子为单位),这样,就会解决传统分布式fs的两个问题。(虽然会有文件末尾的块不是整块(小于128MB),但这点差异很小,可以忽略不计)。

藏獒还会热吗
上海沃尔玛门店?
相关文章