大数据分析特点?
500
2024-04-23
石墨广泛来源有∶
世界上已发现的大中型石墨矿床主要分布在中国、印度、巴西、捷克、加拿大、墨西哥等国。世界石墨储量为7100万吨,中国石墨储量为5500万吨,占世界的77%。巴西石墨矿分布在米纳斯吉拉斯、塞阿腊和巴伊亚,最好的石墨分布在米纳斯吉拉斯州派德拉亚朱尔,探明矿石储量2.5亿吨。印度石墨矿主要分布在奥瑞萨邦和拉贾斯坦邦,印度石墨储量为1075万吨,资源量为15802.5 万吨。加拿大石墨矿床分布在安大略省、不列颠哥伦比亚省和魁北克省,比塞特克里克石墨矿是北美洲最大的石墨矿床。斯里兰卡脉状石墨矿床世界闻名,是世界上唯一的高度石墨化的脉状石墨矿床,位于斯里兰卡岛的西部和西南部。
中国晶质石墨矿物储量为3041万吨,基础储量为5432万吨,资源量为13054万吨。近20年,我国晶质石墨储量呈增加态势,但是大鳞片优质石墨储量减少到不足500万吨。晶质石墨分布在黑龙江、山东和内蒙古等20个省(自治区)。
它的数据来源主要是来源于它的数据库
toobigdata是一个大数据的网站,包含了抖音与快手两大平台的各种数据,给我们提供了更直观的数据分析,不仅有抖音的官方资源,还有众多第三方的各种合作机构
归一化植被指数
遥感影像中,近红外波段的反射值与红光波段的反射值之差比上两者之和。
基本信息
中文名
归一化植被指数
外文名
Normalized Difference Vegetation Index, NDVI
即
(NIR-R)/(NIR+R)
简介
即(NIR-R)/(NIR+R)
NIR为近红外波段的反射值
R为红光波段的反射值
英文缩写为 NDVI。归一化植被指数是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。
NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。
1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;
2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;
3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;
4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关;
1.流动数据。也可以称之为物联网,这些数据可接连到您的IT网络连接设备。当这些数据来到您的网络设备上时,您需要进一步对其分析来决定那些数据是否有意义,其中有意义的可以保留,而那些没意义的则可以删除。关于流动数据的更多理解,您可以阅读其相关白皮书。
2.社交数据。社交数据在社交互动中越来越具有吸引力,尤其是它的营销功能。但是这些数据通常是在非结构化或半结构化形式,对于一个公司当使用和分析这些数据信息的时候,不仅要考虑数据的规模,大数据应用也是一个独特的挑战。
3.公开来源。庞大的数据可以通过打开数据源,像美国政府的数据,CIA世界各国概况或者欧盟开放数据门户等等。
谷雨源自古人“雨生百谷”之说,每年4月20日或21日太阳到达黄经30°时为谷雨。
选中公式单元格---查看编辑栏公式里面的数据引用就是数据来源!!!
1、地图:各种类型的地图是GIS最主要的数据源,因为地图是地理数据的传统描述形式。我国大多数的GIS系统其图形数据大部分都来自地图。
2、遥感影像数据:遥感影象是GIS中一个极其重要的信息源。通过遥感影象可以快速、准确地获得大面积的、综合的各种专题信息,航天遥感影象还可以取得周期性的资料,这些都为GIS提供了丰富的信息。
3、数字数据:目前,随着各种专题图件的制作和各种GIS系统的建立,直接获取数字图形数据和属性数据的可能性越来越大。数字数据也成为GIS信息源不可缺少的一部分。
财经的数据来源于公司的素财务状况,源于市场的财务数据统计
BP神经网络数据预测
1目的:利用BP神经网络进行数据预测。
2 特点
3 原理
人工神经元模型
4 算法
5 流程
6 源代码
clear; clc;
TestSamNum = 20; % 学习样本数量
ForcastSamNum = 2; % 预测样本数量
HiddenUnitNum=8; % 隐含层
InDim = 3; % 输入层
OutDim = 2; % 输出层
% 原始数据
% 人数(单位:万人)
sqrs = [20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...
41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
% 机动车数(单位:万辆)
sqjdcs = [0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6...
2.7 2.85 2.95 3.1];
% 公路面积(单位:万平方公里)
sqglmj = [0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ...
0.56 0.59 0.59 0.67 0.69 0.79];
% 公路客运量(单位:万人)
glkyl = [5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ...
22598 25107 33442 36836 40548 4292743462];
% 公路货运量(单位:万吨)
glhyl = [1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ...
13320 16762 18673 20724 20803 21804];
p = [sqrs; sqjdcs; sqglmj]; % 输入数据矩阵
t = [glkyl; glhyl]; % 目标数据矩阵
[SamIn, minp, maxp, tn, mint, maxt] = premnmx(p, t); % 原始样本对(输入和输出)初始化
SamOut = tn; % 输出样本
MaxEpochs = 50000; % 最大训练次数
lr = 0.05; % 学习率
E0 = 1e-3; % 目标误差
rng('default');
W1 = rand(HiddenUnitNum, InDim); % 初始化输入层与隐含层之间的权值
B1 = rand(HiddenUnitNum, 1); % 初始化输入层与隐含层之间的阈值
W2 = rand(OutDim, HiddenUnitNum); % 初始化输出层与隐含层之间的权值
B2 = rand(OutDim, 1); % 初始化输出层与隐含层之间的阈值
ErrHistory = zeros(MaxEpochs, 1);
for i = 1 : MaxEpochs
HiddenOut = logsig(W1*SamIn + repmat(B1, 1, TestSamNum)); % 隐含层网络输出
NetworkOut = W2*HiddenOut + repmat(B2, 1, TestSamNum); % 输出层网络输出
Error = SamOut - NetworkOut; % 实际输出与网络输出之差
SSE = sumsqr(Error); % 能量函数(误差平方和)
ErrHistory(i) = SSE;
if SSE < E0
break;
end
% 以下六行是BP网络最核心的程序
% 权值(阈值)依据能量函数负梯度下降原理所作的每一步动态调整量
Delta2 = Error;
Delta1 = W2' * Delta2 .* HiddenOut .* (1 - HiddenOut);
dW2 = Delta2 * HiddenOut';
dB2 = Delta2 * ones(TestSamNum, 1);
dW1 = Delta1 * SamIn';
dB1 = Delta1 * ones(TestSamNum, 1);
% 对输出层与隐含层之间的权值和阈值进行修正
W2 = W2 + lr*dW2;
B2 = B2 + lr*dB2;
% 对输入层与隐含层之间的权值和阈值进行修正
W1 = W1 + lr*dW1;
B1 = B1 + lr*dB1;
end
HiddenOut = logsig(W1*SamIn + repmat(B1, 1, TestSamNum)); % 隐含层输出最终结果
NetworkOut = W2*HiddenOut + repmat(B2, 1, TestSamNum); % 输出层输出最终结果
a = postmnmx(NetworkOut, mint, maxt); % 还原网络输出层的结果
x = 1990 : 2009; % 时间轴刻度
newk = a(1, :); % 网络输出客运量
newh = a(2, :); % 网络输出货运量
subplot(2, 1, 1);
plot(x, newk, 'r-o', x, glkyl, 'b--+');
legend('网络输出客运量', '实际客运量');
xlabel('年份');
ylabel('客运量/万人');
subplot(2, 1, 2);
plot(x, newh, 'r-o', x, glhyl, 'b--+');
legend('网络输出货运量', '实际货运量');
xlabel('年份');
ylabel('货运量/万吨');
% 利用训练好的网络进行预测
pnew=[73.39 75.55
3.9635 4.0975
0.9880 1.0268]; % 2010年和2011年的相关数据;
pnewn = tramnmx(pnew, minp, maxp);
HiddenOut = logsig(W1*pnewn + repmat(B1, 1, ForcastSamNum)); % 隐含层输出预测结果
anewn = W2*HiddenOut + repmat(B2, 1, ForcastSamNum); % 输出层输出预测结果
anew = postmnmx(anewn, mint, maxt);
disp('预测值d:');
disp(anew);